Advertisements
Advertisements
प्रश्न
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
उत्तर
L.H.S = `(sin"A" - cos "A" + 1)/(sin "A" + cos "A" - 1)`
`= (tan "A" -1 + sec"A")/(tan "A" + 1 - sec "A")` [Dividing numerator & denominator by cos A]
`= ((tan "A" + sec "A") -1)/((tan "A" - sec "A") + 1)`
`= ((tan "A" + sec"A") - 1(tan"A" - sec "A"))/((tan "A" + sec"A") + 1(tan"A" - sec "A"))`
`= ((tan^2 "A" + sec^2 "A") - (tan "A" - sec "A"))/ ((tan "A" + sec "A" + 1) - (tan "A" - sec "A"))`
`= (-1 - tan "A" + sec "A")/((tan "A" - sec "A" + 1)(tan "A" - sec "A"))`
`= -1/(tan "A" - sec "A")`
`= 1/(sec "A" - tan "A")`
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Without using trigonometrical tables, evaluate:
`cosec^2 57^circ - tan^2 33^circ + cos 44^circ cosec 46^circ - sqrt(2) cos 45^circ - tan^2 60^circ`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Without using trigonometric tables, evaluate :
`sin 16^circ/cos 74^circ`
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
cos275° + cos215° = 1
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
Without using trigonometric tables, prove that:
sin35° sin55° − cos35° cos55° = 0
Without using trigonometric tables, prove that:
tan48° tan23° tan42° tan67° = 1
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
`(2 "sin" 68^circ)/(cos 10^circ )- (2 cot 15^circ)/(5 tan 75^circ) = ((3 tan 45^circ t an 20^circ tan 40^circ tan 50^circ tan 70^circ)) /5= 1`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
If sin 3 A = cos (A − 26°), where 3 A is an acute angle, find the value of A.
A man in a boat rowing away from a lighthouse 100 m high takes 2 minutes to change the angle of elevation of the top of the lighthouse from 60° to 30°. Find the speed of the boat in metres per minute [Use `sqrt3` = 1.732]
From the trigonometric table, write the values of cos 23°17'.
Using trigonometric table evaluate the following:
tan 78°55' - tan 55°18'
The maximum value of `1/(cosec alpha)` is ______.
If sin θ = 1, then the value of `1/2 sin(theta/2)`is ______.