Advertisements
Advertisements
प्रश्न
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
उत्तर
L.H.S = `(sin"A" - cos "A" + 1)/(sin "A" + cos "A" - 1)`
`= (tan "A" -1 + sec"A")/(tan "A" + 1 - sec "A")` [Dividing numerator & denominator by cos A]
`= ((tan "A" + sec "A") -1)/((tan "A" - sec "A") + 1)`
`= ((tan "A" + sec"A") - 1(tan"A" - sec "A"))/((tan "A" + sec"A") + 1(tan"A" - sec "A"))`
`= ((tan^2 "A" + sec^2 "A") - (tan "A" - sec "A"))/ ((tan "A" + sec "A" + 1) - (tan "A" - sec "A"))`
`= (-1 - tan "A" + sec "A")/((tan "A" - sec "A" + 1)(tan "A" - sec "A"))`
`= -1/(tan "A" - sec "A")`
`= 1/(sec "A" - tan "A")`
LHS = RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables,
`sin^2 28^@ + sin^2 62^@ + tan^2 38^@ - cot^2 52^@ + 1/4 sec^2 30^@`
Without using trigonometric tables, evaluate
`sin^2 34^@ + sin^2 56^@ + 2tan 18^@ tan 72^@ - cot^2 30^@`
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`((1+tan^2A)/(1+cot^2A))=((1-tanA)/(1-cotA))^2=tan^2A`
Without using trigonometric tables, evaluate :
`sec 11^circ/("cosec" 79^circ)`
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
cosec272° − tan218° = 1
Without using trigonometric tables, prove that:
cos257° − sin233° = 0
Prove that:
`(sin 70^circ)/(cos 20^circ) + ("cosec" 20^circ)/(sec 70^circ) - 2 cos 70^circ "cosec" 20^circ = 0`
Prove that:
`sin 18^circ/(cos 72^circ )+ sqrt(3)(tan 10^circ tan 30^circ tan 40^circ tan50^circ tan 80^circ) `
Prove that:
\[\frac{\sin\theta}{\cos(90° - \theta)} + \frac{\cos\theta}{\sin(90° - \theta)} = 2\]
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
Given that `tan (θ_1 + θ_2) = (tan θ_1 + tan θ_2)/(1 - tan θ_1 tan θ_2)` Find (θ1 + θ2) when tan θ1 = `1/2 and tan θ_2 = 1/3`.
Without using trigonometric tables, find the value of (sin 72° + cos 18°)(sin 72° - cos 18°).
Without using tables evaluate: `(2tan 53°)/(cot 37°) - (cot 80°)/(tan 10°)`.
From trigonometric table, write the values of sin 37°19'.
From the trigonometric table, write the values of tan 45°48'.