Advertisements
Advertisements
प्रश्न
Without using tables evaluate: 3cos 80°. cosec 10° + 2sin 59° sec 31°
उत्तर १
3 cos 80°. cosec 10° + 2 sin 59° sec 31°
= 3cos (90° – 10°) cosec 10° + 2sin (90° – 31°) sec 31°
= 3 sin 10° cosec 10° + 2 cos 31°, sec 31° ....[sin (90° – θ) = cos θ, cos (90° – θ) = sin θ]
= 3 × 1 + 2 × 1 .....[∵ sin θ. Cosec θ = 1, cos θ. sec θ = 1]
= 5
उत्तर २
3 cos 80°. cosec 10° + 2 sin 59° sec 31°
⇒ `3 cos (90° - 10°). 1/("sin" 10°) + 2 sin (90° - 31°). 1/(cos 31°)`
⇒ `(3 "sin" 10°)/("sin" 10°) + (2"cos" 31°)/("cos" 31°)`
⇒ 3 + 2 = 5.
APPEARS IN
संबंधित प्रश्न
Without using trigonometric tables, evaluate :
`cos 35^circ/sin 55^circ`
Without using trigonometric tables, prove that:
cos 81° − sin 9° = 0
Without using trigonometric tables, prove that:
tan 71° − cot 19° = 0
Without using trigonometric tables, prove that:
cosec 80° − sec 10° = 0
Without using trigonometric tables, prove that:
(sin 65° + cos 25°)(sin 65° − cos 25°) = 0
Prove that:
\[\frac{\cos(90^\circ - \theta)}{1 + \sin(90^\circ - \theta)} + \frac{1 + \sin(90^\circ- \theta)}{\cos(90^\circ - \theta)} = 2 cosec\theta\]
Prove that:
cot12° cot38° cot52° cot60° cot78° = \[\frac{1}{\sqrt{3}}\]
If tan 2 A = cot (A − 12°), where 2 A is an acute angle, find the value of A.
Prove that `(sin "A" - cos "A" + 1)/(sin "A" + cos "A" - 1) = 1/(sec "A" - tan "A")`
Using trigonometric table evaluate the following:
cos 64°42' - sin 42°20'