Advertisements
Advertisements
प्रश्न
Solve: 2cos2θ + sin θ - 2 = 0.
उत्तर
2cos2θ + sin θ - 2 = 0
⇒ 2( 1 - sin2θ) + sin θ - 2 = 0
⇒ 2 - 2 sin2θ + sin θ - 2 = 0
⇒ - sin θ( 2 sin θ - 1) = 0
⇒ sin θ( 2 sin θ - 1) = 0
⇒ sin θ = 0 or 2 sin θ - 1 = 0
⇒ sin θ = 0 or sin θ = `1/2`
⇒ θ = 30°
APPEARS IN
संबंधित प्रश्न
Express sin 67° + cos 75° in terms of trigonometric ratios of angles between 0° and 45°
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`tan47/cot43`
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
What is the maximum value of \[\frac{1}{\sec \theta}\]
If A + B = 90° and \[\tan A = \frac{3}{4}\]\[\tan A = \frac{3}{4}\] what is cot B?
\[\frac{1 - \tan^2 45°}{1 + \tan^2 45°}\] is equal to
Prove the following.
tan4θ + tan2θ = sec4θ - sec2θ
Evaluate: cos2 25° - sin2 65° - tan2 45°
Express the following in term of angles between 0° and 45° :
sin 59° + tan 63°