Advertisements
Advertisements
प्रश्न
Evaluate:
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
उत्तर
`(sin35^circ cos55^circ + cos35^circ sin55^circ)/(cosec^2 10^circ - tan^2 80^circ)`
= `(sin35^circ.cos(90^circ - 35^@) + cos35^circ.sin(90^circ - 35^circ))/(cosec^2(90^circ - 80^circ) - tan^2 80^circ)`
= `(sin35^circ.sin35^circ + cos35^circ.cos35^circ)/(sec^2 80^circ - tan^2 80^circ)`
= `(sin^2 35^circ + cos^2 35^circ)/(sec^2 80^circ - tan^2 80^circ)`
= `1/1`
= 1
APPEARS IN
संबंधित प्रश्न
Express each of the following in terms of trigonometric ratios of angles between 0º and 45º;
(i) cosec 69º + cot 69º
(ii) sin 81º + tan 81º
(iii) sin 72º + cot 72º
Evaluate `(tan 26^@)/(cot 64^@)`
if `sqrt3 tan theta = 3 sin theta` find the value of `sin^2 theta - cos^2 theta`
Solve.
`sec75/(cosec15)`
Prove that:
`(sinthetasin(90^circ - theta))/cot(90^circ - theta) = 1 - sin^2theta`
Use trigonometrical tables to find tangent of 42° 18'
Use trigonometrical tables to find tangent of 17° 27'
If θ is an acute angle such that sec2 θ = 3, then the value of \[\frac{\tan^2 \theta - {cosec}^2 \theta}{\tan^2 \theta + {cosec}^2 \theta}\]
Find the value of the following:
`(cos 70^circ)/(sin 20^circ) + (cos 59^circ)/(sin31^circ) + cos theta/(sin(90^circ - theta))- 8cos^2 60^circ`
The value of 3 sin 70° sec 20° + 2 sin 49° sec 51° is