Advertisements
Advertisements
प्रश्न
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
उत्तर
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
= sin2 34° + [sin2 (90° – 34°)]2 + 2 tan 18° tan (90° – 18°) – cot2 30°
= `sin^2 34^circ + cos^2 34^circ + 2 tan 18^circ cot 18^circ - (sqrt(3))^2`
= `1 + 2 tan 18^circ xx 1/(tan 18^circ) - 3` ...[∵ sin2θ + cos2θ = 1]
= 1 + 2 – 3
= 3 – 3
= 0
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
Prove the following trigonometric identities.
`(1 + sec theta)/sec theta = (sin^2 theta)/(1 - cos theta)`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ