Advertisements
Advertisements
प्रश्न
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
उत्तर
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
L.H.S = sec6 θ
= (sec2 θ)3 = (1 + tan2 θ)3
= 1 + (tan2 θ)3 + 3 (1) (tan2 θ) (1 + tan2 θ) ......[(a + b)3 = a3 + b3 + 3 ab (a + b)]
= 1 + tan6 θ + 3 tan2 θ (1 + tan2 θ)
= 1 + tan6 θ + 3 tan2 θ (sec2 θ)
= 1 + tan6 θ + 3 tan2 θ sec2 θ
= tan6 θ + 3 tan2 θ sec2 θ + 1
L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A