Advertisements
Advertisements
प्रश्न
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
उत्तर
L.H.S. = `(1 - sinA)/(1 + sinA)`
= `(1 - sinA)/(1 + sinA) xx (1 - sinA)/(1 - sinA)`
= `(1 - sinA)^2/(1 - sin^2A`
= `(1 - sinA)^2/cos^2A`
= `((1 - sinA)/cosA)^2`
= `(1/cosA - sinA/cosA)^2`
= `(secA - tanA)^2`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
If `sin theta = x , " write the value of cot "theta .`
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`