Advertisements
Advertisements
प्रश्न
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
उत्तर
Given: sinθ = `11/61`
We know that,
sin2θ + cos2θ = 1
∴ `(11/61)^2 + cos^2θ` = 1
∴ `121/3721 + cos^2θ` = 1
∴ cos2θ = `1 - 121/3721`
∴ cos2θ = `(3721 - 121)/3721`
∴ cos2θ = `3600/3721`
∴ cosθ = `60/61` .......[Taking square root of both sides]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
If `sec theta = x ,"write the value of tan" theta`.
If tanθ `= 3/4` then find the value of secθ.
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove the following identity :
`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.