Advertisements
Advertisements
प्रश्न
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
उत्तर
LHS = `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ))`
= `(sin θ. sin θ cos θ)/(cos θ) + (cos θ . cos θ sin θ)/(sin θ)`
= sin2 θ + cos2 θ
= 1
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If x cos A + y sin A = m and x sin A – y cos A = n, then prove that : x2 + y2 = m2 + n2
Show that : tan 10° tan 15° tan 75° tan 80° = 1
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
If cos θ = `24/25`, then sin θ = ?
Prove that `sec"A"/(tan "A" + cot "A")` = sin A