English

Prove that (Sin θ. Cos (90 - θ) Cos θ)/Sin( 90 - θ) + (Cos θ Sin (90 - θ) Sin θ)/(Cos(90 - θ)) = 1 - Mathematics

Advertisements
Advertisements

Question

Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.

Sum

Solution

LHS = `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ))`

= `(sin θ. sin θ cos θ)/(cos θ) + (cos θ . cos θ sin θ)/(sin θ)`

= sin2 θ + cos2 θ
= 1
= RHS
Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 53.3
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×