Advertisements
Advertisements
Question
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Solution
LHS = `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ))`
= `(sin θ. sin θ cos θ)/(cos θ) + (cos θ . cos θ sin θ)/(sin θ)`
= sin2 θ + cos2 θ
= 1
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`(cot^2 A(sec A - 1))/(1 + sin A) = sec^2 A ((1 - sin A)/(1 + sec A))`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
Prove that sin4A – cos4A = 1 – 2cos2A
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`