Advertisements
Advertisements
Question
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Solution
`"LHS" = sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ))`
Taking L.H.S and rationalizing the numerator and denominator with its respective conjugates, we get,
`"LHS" = sqrt((1 + sin θ)/(1 - sin θ) × (1 + sin θ)/(1 + sin θ)) + sqrt((1 - sin θ)/(1 + sin θ) × (1 - sin θ)/(1 - sin θ))`
`"LHS" = sqrt((1 + sin θ)^2/(1 - sin^2 θ)) + sqrt((1 - sin θ)^2/(1 - sin^2 θ))`
`"LHS" = sqrt((1 + sin^2θ)/(1 - sin^2 θ)) + sqrt((1 - sin^2θ)/(1 - sin^2 θ))`
`"LHS" = sqrt((1 + sin^2θ)/(cos^2 θ)) + sqrt((1 - sin^2θ)/(cos^2 θ))`
`"LHS" = (1 + sin θ)/(cos θ) + (1 - sin θ)/(cos θ)`
`"LHS" = (1 + cancel(sin θ) + 1 -cancel(sin θ))/(cos θ)`
LHS = `2/(cos θ)`
LHS = 2. `1/(cos θ)`
LHS = 2. sec θ
RHS = 2. sec θ
LHS = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`(sec^2 theta-1) cot ^2 theta=1`
cosec4θ − cosec2θ = cot4θ + cot2θ
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
(sec A + tan A) (1 − sin A) = ______.
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Choose the correct alternative:
cos θ. sec θ = ?
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ