Advertisements
Advertisements
Question
cosec4θ − cosec2θ = cot4θ + cot2θ
Solution 1
LHS = cosec4θ − cosec2θ
LHS = cosec2θ (cosec2θ − 1)
`"LHS" = (cot^2θ + 1)cot^2θ ...{(cot^2θ + 1 = cosec^2θ),(∵ cot^2θ = cosec^2θ - 1):}`
LHS = cot4θ + cot2θ
RHS = cot4θ + cot2θ
RHS = LHS
Hence proved.
Solution 2
RHS = cot4θ + cot2θ
RHS = cot2θ (cot2θ + 1)
`"RHS"=(cosec^2θ-1)cosec^2θ ...{(cot^2θ+1=cosec^2θ),(∵ cot^2θ=cosec^2θ-1):}`
RHS = cosec4θ − cosec2θ
LHS = cosec4θ − cosec2θ
RHS = LHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
Prove the following identity :
`(tanθ + secθ - 1)/(tanθ - secθ + 1) = (1 + sinθ)/(cosθ)`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.