English

Sin2θ+cos4θ=cos2θ+sin4θ - Mathematics

Advertisements
Advertisements

Question

`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`

Sum

Solution

LHS = `sin^2 theta + cos ^4 theta`

      =`sin^2 theta + ( cos ^2 theta )^2`

      =`sin^2 theta + (1- sin^2 theta)^2`

      =` sin^2 theta + 1 -2  sin^2 theta + sin ^4 theta`

      =`1-sin^2 theta + sin^4 theta`

     =`cos^2 theta + sin^4 theta`

    = RHS
Hence, LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 17.2

RELATED QUESTIONS

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


Prove the following trigonometric identities

`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`


` tan^2 theta - 1/( cos^2 theta )=-1`


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


If a cos θ − b sin θ = c, then a sin θ + b cos θ =


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×