Advertisements
Advertisements
Question
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
Solution 1
LHS = ` sin theta (1+ tan theta ) + cos theta ( 1+ cot theta )`
=` sin theta + sin theta xx (sin theta)/(cos theta) + cos theta +cos theta xx (cos theta)/( sin theta)`
= `( cos theta sin ^2 theta + sin^3 theta + cos^2 theta sin theta + cos^3 theta)/(cos theta sin theta)`
=`((sin^3 theta + cos^3 theta)+(cos theta sin ^2 theta + cos ^2 theta sin theta))/(cos theta sin theta)`
=`((sin theta + cos theta )(sin^2 theta - sin theta cos theta + cos ^2 theta )+ sin theta cos theta ( sin theta + cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta )( sin^2 theta + cos^2 theta - sin theta cos theta + sin theta cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta)(1))/(cos theta sin theta)`
= `(sin theta)/(cos theta sin theta) + (cos theta)/( cos theta sin theta)`
=`1/cos theta + 1/ sin theta`
=` sec theta + cosec theta`
=RHS
Solution 2
LHS = ` sin theta (1+ tan theta ) + cos theta ( 1+ cot theta )`
=` sin theta + sin theta xx (sin theta)/(cos theta) + cos theta +cos theta xx (cos theta)/( sin theta)`
= `( cos theta sin ^2 theta + sin^3 theta + cos^2 theta sin theta + cos^3 theta)/(cos theta sin theta)`
=`((sin^3 theta + cos^3 theta)+(cos theta sin ^2 theta + cos ^2 theta sin theta))/(cos theta sin theta)`
=`((sin theta + cos theta )(sin^2 theta - sin theta cos theta + cos ^2 theta )+ sin theta cos theta ( sin theta + cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta )( sin^2 theta + cos^2 theta - sin theta cos theta + sin theta cos theta))/(cos theta sin theta)`
=`((sin theta + cos theta)(1))/(cos theta sin theta)`
= `(sin theta)/(cos theta sin theta) + (cos theta)/( cos theta sin theta)`
=`1/cos theta + 1/ sin theta`
=` sec theta + cosec theta`
=RHS
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
`(1-cos^2theta) sec^2 theta = tan^2 theta`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If x = a sin θ and y = bcos θ , write the value of`(b^2 x^2 + a^2 y^2)`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove the following identities:
`1/(sin θ + cos θ) + 1/(sin θ - cos θ) = (2sin θ)/(1 - 2 cos^2 θ)`.
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
tan θ cosec2 θ – tan θ is equal to
(1 – cos2 A) is equal to ______.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`