Advertisements
Advertisements
Question
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
Solution
`(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`
L.H.S. `(cot A - cos A)/(cot A + cos A)`
= `(cos A/sin A - cos A)/(cos A/sin A + cos A)`
= `(cos A(1/sinA - 1))/(cos A(1/sin A + 1))`
= `(1/sin A - 1)/(1/sin A + 1)`
= `(1 - sin A)/(1 + sin A)`
= `(1 - sin A)/(1 + sin A) xx (1 + sin A)/(1 + sin A)`
= `(1 - sin^2 A)/(1 + sin A)^2`
= `cos^2 A/(1 + sin A)^2`
= R.H.S.
Hence Proved.
APPEARS IN
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
If` (sec theta + tan theta)= m and ( sec theta - tan theta ) = n ,` show that mn =1
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
What is the value of 9cot2 θ − 9cosec2 θ?
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Find A if tan 2A = cot (A-24°).
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ
Choose the correct alternative:
Which is not correct formula?
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.