Advertisements
Advertisements
Question
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
Solution
L.H.S. = x2 + y2 + z2
= (r sin A cos B)2 + (r sin A sin B)2 + (r cos A)2
= r2 sin2 A cos2 B + r2 sin2 A sin2 B + r2 cos2 A
= r2 sin2 A (cos2 B + sin2 B) + r2 cos2 A
= r2 (sin2 A + cos2 A)
= r2 = R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
(secA + tanA) (1 − sinA) = ______.
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
(1 + sin A)(1 – sin A) is equal to ______.