Advertisements
Advertisements
Question
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Solution
LHS = `(cosA + sinA)^2 + (cosA - sinA)^2`
= `cos^2A + sin^2A + 2cosA.sinA + cos^2A + sin^2A - 2cosA.sinA`
= `2(cos^2A + sin^2A) = 2` = RHS
APPEARS IN
RELATED QUESTIONS
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Choose the correct alternative:
cos θ. sec θ = ?
If cos θ = `24/25`, then sin θ = ?
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ