English

Choose the correct alternative: cos θ. sec θ = ? - Geometry Mathematics 2

Advertisements
Advertisements

Question

Choose the correct alternative:

cos θ. sec θ = ?

Options

  • 1

  • 0

  • `1/2`

  • `sqrt(2)`

MCQ

Solution

1

cos θ. sec θ = cos θ. `1/"cos θ"` = 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.1 (A)

RELATED QUESTIONS

Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

`sqrt((1 + sinA)/(1 - sinA)) = sec A + tan A`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


What is the value of (1 − cos2 θ) cosec2 θ? 


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


If tan θ = `13/12`, then cot θ = ?


Prove that `"cosec"  θ xx sqrt(1 - cos^2theta)` = 1


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


If sin A = `1/2`, then the value of sec A is ______.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×