Advertisements
Advertisements
Question
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
Solution
`(sinA-cosA+1)/(sinA+cosA-1)`
= `(sinA - cosA + 1)/(sinA + cosA - 1) xx (sinA - (cosA - 1))/(sinA - (cosA - 1))`
= `(sinA - cosA + 1)^2/(sin^2A - (cosA - 1)^2)`
= `(sin^2A + cos^2A + 1 - 2sinAcosA - 2cosA + 2sinA)/(sin^2A - cos^2A - 1 + 2cosA)`
= `(1 + 1 - 2sinAcosA - 2cosA + 2sinA)/(-cos^2A - cos^2A + 2cosA)`
= `(2(1 - cosA) + 2sinA(1 - cosA))/(2cosA(1 - cosA)`
= `(1 + sinA)/cosA`
= `(1 + sinA)/cosA xx (1 - sinA)/(1 - sinA)`
= `cos^2A/(cosA(1 - sinA))`
= `cosA/(1 - sinA)`
APPEARS IN
RELATED QUESTIONS
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
(secA + tanA) (1 − sinA) = ______.
Show that `sqrt((1-cos A)/(1 + cos A)) = sinA/(1 + cosA)`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
If cosec θ = 2x and \[5\left( x^2 - \frac{1}{x^2} \right)\] \[2\left( x^2 - \frac{1}{x^2} \right)\]
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Choose the correct alternative:
sec2θ – tan2θ =?