Advertisements
Advertisements
Question
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Solution
`sinA/(1 - cosA) - cotA`
= `sinA/(1 - cosA) - cosA/sinA`
= `(sin^2A - cosA + cos^2A)/((1 - cosA)sinA)`
= `(1 - cosA)/((1 - cosA)sinA)`
= `1/sinA`
= cosec A
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If tanθ `= 3/4` then find the value of secθ.
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`cos 63^circ sec(90^circ - θ) = 1`
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α