English

Prove the Following Trigonometric Identities. Sin A/(Sec a + Tan a - 1) + Cos A/(Cosec a + Cot a + 1) = 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`

Solution

We have to prove `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`

We know that, `sin^2 A + cos^2 A = 1`

So,

`sin A/(sec A + tab A - 1) + cos A/(cosec A + cot A -1)`

`= sin A/(1/cos A + sin A/cos A - 1) + cos A/(1/sin A + cos A/sin A - 1)`

`= sin A/((1 + sin A - cos A)/cos A) + cos A/((1 + cos A - sin A)/sin A)`

`= (sin A cos A)/(1 + sin A - cos A) + (sin A cos A)/(1 + cos A - sin A)`

`= (sin A cos A(1 + cos A - sin A) + sin A cos A((1 + sin A - cos A)))/((1 + sin A - cos A)(1 + cos A- sin A))`

`= (sin A cos A (1 + cos A - sin A + 1  + sin A - cos A))/({1 + (sin A - cos A)}{1 - (sin A - cos A)})`

`= (2 sin A cos A)/(1 - (sin A - cos A)^2)`

`= (2 sin A cos A)/(1-(sin^2 A - 2 sin A cos A + cos^2 A))`

`= (2 sin A cos A)/(1 - (1 - 2 sin A cos A))`

`= (2 sin A cos A)/(1 - 1 +  2 sin A cos A)`

`= (2 sin A cos A)/(2 sin A cos A)`

= 1

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 64 | Page 46

RELATED QUESTIONS

The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`


If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`


From the figure find the value of sinθ.


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`


Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.


Choose the correct alternative:

cot θ . tan θ = ?


Choose the correct alternative:

tan (90 – θ) = ?


Choose the correct alternative:

Which is not correct formula?


Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`


tan θ × `sqrt(1 - sin^2 θ)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×