Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
Solution
We have to prove `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
We know that, `sin^2 A + cos^2 A = 1`
So,
`sin A/(sec A + tab A - 1) + cos A/(cosec A + cot A -1)`
`= sin A/(1/cos A + sin A/cos A - 1) + cos A/(1/sin A + cos A/sin A - 1)`
`= sin A/((1 + sin A - cos A)/cos A) + cos A/((1 + cos A - sin A)/sin A)`
`= (sin A cos A)/(1 + sin A - cos A) + (sin A cos A)/(1 + cos A - sin A)`
`= (sin A cos A(1 + cos A - sin A) + sin A cos A((1 + sin A - cos A)))/((1 + sin A - cos A)(1 + cos A- sin A))`
`= (sin A cos A (1 + cos A - sin A + 1 + sin A - cos A))/({1 + (sin A - cos A)}{1 - (sin A - cos A)})`
`= (2 sin A cos A)/(1 - (sin A - cos A)^2)`
`= (2 sin A cos A)/(1-(sin^2 A - 2 sin A cos A + cos^2 A))`
`= (2 sin A cos A)/(1 - (1 - 2 sin A cos A))`
`= (2 sin A cos A)/(1 - 1 + 2 sin A cos A)`
`= (2 sin A cos A)/(2 sin A cos A)`
= 1
Hence proved.
APPEARS IN
RELATED QUESTIONS
The angles of depression of two ships A and B as observed from the top of a light house 60 m high are 60° and 45° respectively. If the two ships are on the opposite sides of the light house, find the distance between the two ships. Give your answer correct to the nearest whole number.
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
From the figure find the value of sinθ.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Choose the correct alternative:
cot θ . tan θ = ?
Choose the correct alternative:
tan (90 – θ) = ?
Choose the correct alternative:
Which is not correct formula?
Prove that `costheta/(1 + sintheta) = (1 - sintheta)/(costheta)`
tan θ × `sqrt(1 - sin^2 θ)` is equal to: