Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Solution
We have to prove `tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
We know that `sin^2 A + cos^2 A = 1`
So
`tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2`
`= tan A/(sec^2 A)^2 + cot A/(cosec^2 A)^2`
`= tan A/sec^4 A + cot A/(cosec^4 A)`
`= (sin A/cos A)/(1/cos^4 A) + (cos A/sin A)/(1/sin^4 A)`
`= (sin A cos^4 A)/cos A + (cos A sin^4 A)/sin A`
`= sin A cos^3 A + cos A sin^3 A`
`= sin A cos A (cos^2 A + sin^2 A)`
= sin A cos A
Hence proved.
APPEARS IN
RELATED QUESTIONS
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`sec theta (1- sin theta )( sec theta + tan theta )=1`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Evaluate:
`(tan 65^circ)/(cot 25^circ)`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`