English

Prove the Following Trigonometric Identities.Tan A/(1 + Tan^2 A)^2 + Cot A/(1 + Cot^2 A) = Sin A Cos a - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`

Solution

We have to prove `tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`

We know that `sin^2 A + cos^2 A = 1`

So

`tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2`

`= tan A/(sec^2 A)^2  + cot A/(cosec^2 A)^2`

`= tan A/sec^4 A  + cot A/(cosec^4 A)`

`= (sin A/cos A)/(1/cos^4 A) + (cos A/sin A)/(1/sin^4 A)`

`= (sin A cos^4 A)/cos A + (cos A sin^4 A)/sin A`

`= sin A cos^3 A + cos A sin^3 A`

`= sin A cos A (cos^2 A + sin^2 A)`

= sin A cos A

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 65 | Page 46

RELATED QUESTIONS

Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following identities:

sec2 A + cosec2 A = sec2 A . cosec2 A


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


`sec theta (1- sin theta )( sec theta + tan theta )=1`


If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`


Write the value of `(cot^2 theta -  1/(sin^2 theta))`. 


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Evaluate:

`(tan 65^circ)/(cot 25^circ)`


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×