Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
उत्तर
We have to prove `tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
We know that `sin^2 A + cos^2 A = 1`
So
`tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2`
`= tan A/(sec^2 A)^2 + cot A/(cosec^2 A)^2`
`= tan A/sec^4 A + cot A/(cosec^4 A)`
`= (sin A/cos A)/(1/cos^4 A) + (cos A/sin A)/(1/sin^4 A)`
`= (sin A cos^4 A)/cos A + (cos A sin^4 A)/sin A`
`= sin A cos^3 A + cos A sin^3 A`
`= sin A cos A (cos^2 A + sin^2 A)`
= sin A cos A
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
If sin A = `1/2`, then the value of sec A is ______.