हिंदी

Prove that √ 1 + sin A 1 − sin A = sec A + tan A. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A. 

योग

उत्तर

LHS = `sqrt((1+sinA)/(1-sinA))`

`=sqrt((1+sinA)/(1-sinA)xx(1+sinA)/(1+sinA)`

`=sqrt((1+sinA)^2/(1-sin^2A))=sqrt((1+sinA)^2/cos^2A)`

`=(1+sinA)/cosA`

= sec A + tan A = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (October)

APPEARS IN

संबंधित प्रश्न

Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


If sin θ − cos θ = 0 then the value of sin4θ + cos4θ


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`


If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to


Choose the correct alternative:

cot θ . tan θ = ?


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×