Advertisements
Advertisements
प्रश्न
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
उत्तर
LHS = `sqrt((1+sinA)/(1-sinA))`
`=sqrt((1+sinA)/(1-sinA)xx(1+sinA)/(1+sinA)`
`=sqrt((1+sinA)^2/(1-sin^2A))=sqrt((1+sinA)^2/cos^2A)`
`=(1+sinA)/cosA`
= sec A + tan A = RHS
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Choose the correct alternative:
cot θ . tan θ = ?
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`