Advertisements
Advertisements
प्रश्न
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
उत्तर
(sin A + cos A) (sec A + cosec A)
= `sinA/cosA + 1 + 1 + cosA/sinA`
= `2 + (cos^2A + sin^2A)/(sinAcosA)`
= `2 + 1/(sinAcosA)`
= 2 + sec A cosec A
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Find A if tan 2A = cot (A-24°).
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.