Advertisements
Advertisements
प्रश्न
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
उत्तर
(sin A + cos A) (sec A + cosec A)
= `sinA/cosA + 1 + 1 + cosA/sinA`
= `2 + (cos^2A + sin^2A)/(sinAcosA)`
= `2 + 1/(sinAcosA)`
= 2 + sec A cosec A
APPEARS IN
संबंधित प्रश्न
Prove that `(sin theta)/(1-cottheta) + (cos theta)/(1 - tan theta) = cos theta + sin theta`
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
If tan α + cot α = 2, then tan20α + cot20α = ______.