Advertisements
Advertisements
प्रश्न
Prove that:
`sqrt(sec^2A + cosec^2A) = tanA + cotA`
उत्तर
L.H.S. = `sqrt(sec^2A + cosec^2A)`
= `sqrt(1/cos^2A + 1/sin^2A)`
= `sqrt((sin^2A + cos^2A)/(sin^2Acos^2A)`
= `sqrt(1/(sin^2Acos^2A)`
= `sqrt(1/(sinAcosA))`
R.H.S. = tan A + cot A
= `sinA/cosA + cosA/sinA`
= `(sin^2A + cos^2A)/(sinAcosA)`
= `1/(sinAcosA)`
L.H.S. = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
If tanθ `= 3/4` then find the value of secθ.
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B