Advertisements
Advertisements
प्रश्न
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
उत्तर
LHS = mn = (secθ + tanθ) (secθ - tanθ)
⇒ LHS = `sec^2θ - tan^2θ` [Because (a-b)(a+b) = a2 - b2]
⇒ LHS = 1 [Since `1 + tan^2θ = sec^2θ`]
Hence , mn = 1
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
Write True' or False' and justify your answer the following :
The value of sin θ+cos θ is always greater than 1 .
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Choose the correct alternative:
cos θ. sec θ = ?
If sin A = `1/2`, then the value of sec A is ______.