मराठी

If Secθ + Tanθ = M , Secθ - Tanθ = N , Prove that Mn = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1

बेरीज

उत्तर

LHS = mn = (secθ + tanθ) (secθ - tanθ)

⇒ LHS = `sec^2θ - tan^2θ`    [Because (a-b)(a+b) = a2 - b2]

⇒ LHS = 1 [Since  `1 + tan^2θ = sec^2θ`]

Hence , mn = 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Trigonometric Identities - Exercise 21.2

APPEARS IN

फ्रँक Mathematics - Part 2 [English] Class 10 ICSE
पाठ 21 Trigonometric Identities
Exercise 21.2 | Q 6
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×