Advertisements
Advertisements
प्रश्न
If sin A = `1/2`, then the value of sec A is ______.
पर्याय
`2sqrt(3)`
`1/sqrt(3)`
`sqrt(3)`
1
उत्तर
If sin A = `1/2`, then the value of sec A is `underline(bb(2sqrt(3))`.
Explanation:
sin A = `1/2`
cos A = `sqrt(1 - sin^2A)`
= `sqrt(1 - 1/4)`
= `sqrt(3)/2`
sec A = `1/cosA`
= `1/(sqrt(3)/2)`
= `2/sqrt(3)`
sec A = `2/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`
sec θ when expressed in term of cot θ, is equal to ______.