Advertisements
Advertisements
प्रश्न
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
उत्तर
LHS = `(sec θ - 1)/(sec θ + 1)`
= `(1/cos θ - 1)/(1/cos θ + 1)`
= `(1 - cos θ)/(1 + cos θ)`
= `(1 - cos θ xx ( 1 + cos θ))/(1 + cos θ xx (1 + cos θ))`
= `(1 - cos^2 θ)/(1 + cos θ)^2`
= `(sin^2 θ)/(1 + cos θ)^2`
= `((sin θ)/(1 + cos θ ))^2`
= RHS
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If 2sin2β − cos2β = 2, then β is ______.