Advertisements
Advertisements
प्रश्न
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
उत्तर
`As sin^2 theta = 1 - cos^2 theta`
=` 1- (7/25)^2`
=`1-49/625`
=`(625-49)/625`
⇒ `sin^2 theta = 576/625`
⇒` sintheta = sqrt(576/625)`
⇒`sin theta = 24/25`
Now ,
`tan theta + cot theta `
=`sin theta / cos theta+ cos theta /sin theta`
=`(sin^2 theta + cos^2 theta)/(cos theta sin theta)`
=`1/((7/25xx24/25))`
=`1/((168/625))`
=`625/168`
APPEARS IN
संबंधित प्रश्न
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`(1 - cos theta)/sin theta = sin theta/(1 + cos theta)`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities.
`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ± 3.
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
Prove the following identity :
`(1 + tan^2θ)sinθcosθ = tanθ`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Given that sin θ = `a/b`, then cos θ is equal to ______.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Prove the following identity:
(sin2θ – 1)(tan2θ + 1) + 1 = 0