Advertisements
Advertisements
प्रश्न
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
उत्तर
`4+4 tan^2 theta `
= `4(1+ tan ^2 theta)`
=`4 sec^2 theta `
=`4/ cos^2 theta`
=`4/(2/3)^2`
=`4/((4/9))`
=`(4xx9)/4`
=9
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(1 + sin A)/(1 - sin A) = (cosec A + 1)/(cosec A - 1)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
If a cos `theta + b sin theta = m and a sin theta - b cos theta = n , "prove that "( m^2 + n^2 ) = ( a^2 + b^2 )`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
Choose the correct alternative:
sec 60° = ?
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
(1 + sin A)(1 – sin A) is equal to ______.