Advertisements
Advertisements
प्रश्न
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
पर्याय
tan2 θ
sec2 θ
1
–1
उत्तर
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is –1.
Explanation:
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`
= `(cos^2 θ - 1)/(sin^2 θ)`
= `(-sin^2 θ)/(sin^2 θ)` ...(∵ sin2θ = 1 – cos2θ)
= –1
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
if x = a cos^3 theta, y = b sin^3 theta` " prove that " `(x/a)^(2/3) + (y/b)^(2/3) = 1`
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
If `sec theta + tan theta = p,` prove that
(i)`sec theta = 1/2 ( p+1/p) (ii) tan theta = 1/2 ( p- 1/p) (iii) sin theta = (p^2 -1)/(p^2+1)`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
Choose the correct alternative:
tan (90 – θ) = ?
If cos A + cos2A = 1, then sin2A + sin4 A = ?
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
Show that `(cos^2(45^circ + theta) + cos^2(45^circ - theta))/(tan(60^circ + theta) tan(30^circ - theta))` = 1