Advertisements
Advertisements
प्रश्न
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
उत्तर
L.H.S. = cot θ + tan θ
= `costheta/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/(sintheta costheta)` ...[cos2 θ + sin2 θ = 1]
= `1/(sintheta costheta)`
= sec θ . cosec θ = R.H.S.
∴ cot θ + tan θ = sec θ cosec θ
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities
tan2 A + cot2 A = sec2 A cosec2 A − 2
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.