Advertisements
Advertisements
Question
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Solution
L.H.S. = cot θ + tan θ
= `costheta/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/(sintheta costheta)` ...[cos2 θ + sin2 θ = 1]
= `1/(sintheta costheta)`
= sec θ . cosec θ = R.H.S.
∴ cot θ + tan θ = sec θ cosec θ
APPEARS IN
RELATED QUESTIONS
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0