Advertisements
Advertisements
Question
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
Solution
LHS = sin θ sin( 90° - θ) - cos θ cos( 90° - θ)
= sin θ . cos θ - cos θ . sin θ
= 0
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.