Advertisements
Advertisements
Question
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Solution
LHS = `(1 sin^2 theta + 2 sin theta + 1 + sin^2 theta - 2 sin theta)/(2 cos theta)`
`=> (2(1 + sin^2 theta))/(2 cos^2 theta) => (1 + sin^2 theta)/(1 - sin^2 theta)` `[∵ cos^2 theta = 1 - sin^2 theta]`
∴ LHS = RHS Hence proved
APPEARS IN
RELATED QUESTIONS
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
sec6θ = tan6θ + 3 tan2θ sec2θ + 1
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
(1 – tan A)2 + (1 + tan A)2 = 2 sec2A
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`1/(1 - sinA) + 1/(1 + sinA) = 2sec^2A`
`(1 + cot^2 theta ) sin^2 theta =1`
`(sec^2 theta-1) cot ^2 theta=1`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Choose the correct alternative:
`(1 + cot^2"A")/(1 + tan^2"A")` = ?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
If tan α + cot α = 2, then tan20α + cot20α = ______.
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.