English

`(1 + Cot^2 Theta ) Sin^2 Theta =1` - Mathematics

Advertisements
Advertisements

Question

`(1 + cot^2 theta ) sin^2 theta =1`

Solution

LHS= `(1+cot^2 theta)sin^2 theta`

      =`cosec^2 theta   sin^2 theta    (∵ cosec^2 theta - cot^2 theta =1)`

     =`1/(sin ^2theta)xxsin^2 theta`

    =1

Hence, LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 1.2

RELATED QUESTIONS

Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

`(1 + cos A)/sin^2 A = 1/(1 - cos A)`


Prove the following trigonometric identities.

`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`


Without using trigonometric table , evaluate : 

`sin72^circ/cos18^circ  - sec32^circ/(cosec58^circ)`


`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Choose the correct alternative:

cos 45° = ?


If tan θ = `13/12`, then cot θ = ?


If tan θ = `9/40`, complete the activity to find the value of sec θ.

Activity:

sec2θ = 1 + `square`     ......[Fundamental trigonometric identity]

sec2θ = 1 + `square^2`

sec2θ = 1 + `square` 

sec θ = `square` 


Prove that

sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×