Advertisements
Advertisements
Question
`(1 + cot^2 theta ) sin^2 theta =1`
Solution
LHS= `(1+cot^2 theta)sin^2 theta`
=`cosec^2 theta sin^2 theta (∵ cosec^2 theta - cot^2 theta =1)`
=`1/(sin ^2theta)xxsin^2 theta`
=1
Hence, LHS = RHS
APPEARS IN
RELATED QUESTIONS
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(1 + cos A)/sin^2 A = 1/(1 - cos A)`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Choose the correct alternative:
cos 45° = ?
If tan θ = `13/12`, then cot θ = ?
If tan θ = `9/40`, complete the activity to find the value of sec θ.
Activity:
sec2θ = 1 + `square` ......[Fundamental trigonometric identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square`
sec θ = `square`
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A