Advertisements
Advertisements
Question
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Solution
LHS = cos 1°cos 2°cos 3° ....cos 180°
= cos 1°cos 2°cos 3° ....cos 89° cos 90° .... cos 180°
= cos 1°cos 2°cos 3° ....cos 89° x 0 x cos 91° .... cos 180°
= 0
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Given that sin θ = `a/b`, then cos θ is equal to ______.