Advertisements
Advertisements
Question
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Solution
\[\sin\theta = x + \frac{1}{x}\]
\[ \Rightarrow - 1 \leq x + \frac{1}{x} \leq 1\]
\[ \Rightarrow x + \frac{1}{x} \leq 1\]
\[ \Rightarrow x^2 + 1 \leq x\]
\[ \Rightarrow x^2 + 1 - x \leq 0\]
\[\text{ Take } x = 1, \]
\[ \Rightarrow 1 + 1 - 1 \leq 0\]
\[ \Rightarrow 1 \leq 0\]
\[\text{ Which is false, so x is not always a positive real number . \]
\[The given statement is false } .\]
APPEARS IN
RELATED QUESTIONS
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
` (sin theta + cos theta )/(sin theta - cos theta ) + ( sin theta - cos theta )/( sin theta + cos theta) = 2/ ((1- 2 cos^2 theta))`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
Simplify : 2 sin30 + 3 tan45.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.