Advertisements
Advertisements
Question
Simplify : 2 sin30 + 3 tan45.
Solution
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
If `sec theta + tan theta = x," find the value of " sec theta`
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Simplify
sin A `[[sinA -cosA],["cos A" " sinA"]] + cos A[[ cos A" sin A " ],[-sin A" cos A"]]`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A