Advertisements
Advertisements
Question
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Solution
LHS = sec2 θ + cosec2 θ
= `1/(cos^2 θ) + 1/(sin^2 θ)`
= `(sin^2 θ + cos^2 θ)/(sin^2 θ. cos^2 θ)`
= `1/(sin^2 θ. cos^2 θ)`
= `1/(sin^2 θ) xx 1/(cos^2 θ)`
= sec2 θ cosec2 θ
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following identities:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove the following identities:
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (1 + cosA)/sinA`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.