English

Prove the Following Trigonometric Identities Cos Theta/(1 - Sin Theta) = (1 + Sin Theta)/Cos Theta - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`

Sum

Solution

We know that, `sin^2 theta + cos^2 theta = 1`

Multiplying both numerator and the denominator by `(1 + sin theta)` we have

`cos theta/(1- sin theta) = (cos theta(1 + sin theta))/((1 - sin theta)(1 + sin theta))`

`= (cos theta(1 + sin theta))/(1 - sin^2 theta)`

`= (cos theta(1 + sin theta))/cos^2 theta`

`= (1 + sin theta)/cos theta`

shaalaa.com
  Is there an error in this question or solution?
Chapter 18: Trigonometry - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 18 Trigonometry
Exercise 2 | Q 60.1
RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 7 | Page 43

RELATED QUESTIONS

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove the following identities:

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


Prove the following identity :

`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`


(sec θ + tan θ) . (sec θ – tan θ) = ?


Prove that cot2θ × sec2θ = cot2θ + 1


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


Given that sin θ = `a/b`, then cos θ is equal to ______.


If sin A = `1/2`, then the value of sec A is ______.


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×