Advertisements
Advertisements
Question
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Solution
We know that, `sin^2 theta + cos^2 theta = 1`
Multiplying both numerator and the denominator by `(1 + sin theta)` we have
`cos theta/(1- sin theta) = (cos theta(1 + sin theta))/((1 - sin theta)(1 + sin theta))`
`= (cos theta(1 + sin theta))/(1 - sin^2 theta)`
`= (cos theta(1 + sin theta))/cos^2 theta`
`= (1 + sin theta)/cos theta`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
`Prove the following trigonometric identities.
`(sec A - tan A)^2 = (1 - sin A)/(1 + sin A)`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
If m = a secA + b tanA and n = a tanA + b secA , prove that m2 - n2 = a2 - b2
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
(sec θ + tan θ) . (sec θ – tan θ) = ?
Prove that cot2θ × sec2θ = cot2θ + 1
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Given that sin θ = `a/b`, then cos θ is equal to ______.
If sin A = `1/2`, then the value of sec A is ______.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ