Advertisements
Advertisements
Question
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
Solution
L.H.S = sec2A – cosec2A
= `1/(cos^2"A") - 1/(sin^2"A")`
= `(sin^2"A" - cos^2"A")/(cos^2"A"*sin^2"A")`
= `(sin^2"A" - (1 - sin^2"A"))/(sin^2"A"*cos^2"A")` .....`[(because sin^2"A" + cos^2"A" = 1),(therefore 1 - sin^2"A" = cos^2"A")]`
= `(sin^2"A" - 1 + sin^2"A")/(sin^2"A"*cos^2"A")`
= `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
= R.H.S
∴ sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following trigonometric identities
`((1 + sin theta)^2 + (1 + sin theta)^2)/(2cos^2 theta) = (1 + sin^2 theta)/(1 - sin^2 theta)`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
If x = acosθ , y = bcotθ , prove that `a^2/x^2 - b^2/y^2 = 1.`
Without using trigonometric table , evaluate :
`sin72^circ/cos18^circ - sec32^circ/(cosec58^circ)`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`