Advertisements
Advertisements
Question
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Solution
Taking L.H.S.
`(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A")`
`((sin^2"A")/(cos^2"A"))/((sin^2"A")/(cos^2"A")-1)+ ((1)/(sin^2"A"))/((1)/(cos^2"A")-(1)/(sin^2"A")) ...(∵ tan "A" = (sin"A")/(cos"A"))`
= `(sin^2"A")/(sin^2 "A"- cos^2"A") + (1)/(sin^2 "A"). (sin^2"A" cos^2"A")/(sin^2"A"-cos^2"A")`
= `(sin^2"A")/(sin^2 "A"- cos^2"A") + (cos^2"A")/(sin^2 "A"- cos^2"A")`
= `(sin^2 "A"+ cos^2"A")/(sin^2"A"-cos^2"A")`
= `(1)/(1-cos^2"A"-cos^2"A") ...(∵ sin^2 "A" = 1 -cos^2"A")`
= `(1)/(1-2 cos^2 "A")`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Evaluate sin25° cos65° + cos25° sin65°
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
If cos θ = `24/25`, then sin θ = ?
If 2sin2β − cos2β = 2, then β is ______.