Advertisements
Advertisements
Question
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Solution
`sec^2 theta (1+ sin theta ) (1- sin theta)`
=`sec^2 theta (1 - sin^2 theta)`
=`1/ cos^2 theta xx cos^2 theta`
= 1
APPEARS IN
RELATED QUESTIONS
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
Prove the following identities:
(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`(sec^2 theta-1) cot ^2 theta=1`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Write the value of tan10° tan 20° tan 70° tan 80° .
Write the value of cos1° cos 2°........cos180° .
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.