Advertisements
Advertisements
प्रश्न
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
उत्तर
`sec^2 theta (1+ sin theta ) (1- sin theta)`
=`sec^2 theta (1 - sin^2 theta)`
=`1/ cos^2 theta xx cos^2 theta`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`
Prove the following identities:
cosec4 A – cosec2 A = cot4 A + cot2 A
`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
Find the value of sin 30° + cos 60°.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or `1/2`.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.