Advertisements
Advertisements
प्रश्न
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
उत्तर
Given : `cos theta + sin theta = sqrt(2) sin theta`
We have `( sin theta + cos theta )^2 + (sin theta - cos theta )^2 =2(sin^2 theta + cos^2 theta )`
`= > ( sqrt(2) sin theta )^2 + ( sin theta - cos theta ) ^2 = 2 `
`= > 2 sin^2 theta + ( sin theta - cos theta ) ^2 = 2`
`= > ( sin theta - cos theta ) ^2 = 2-2 sin^2 theta `
`= > ( sin theta - cos theta ) ^2 =2(1- sin^2 theta)`
`= > ( sin theta - cos theta ) ^2 = 2 cos^2 theta`
`= > ( sin theta - cos theta ) = sqrt(2) cos theta`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that ` \frac{\sin \theta -\cos \theta +1}{\sin\theta +\cos \theta -1}=\frac{1}{\sec \theta -\tan \theta }` using the identity sec2 θ = 1 + tan2 θ.
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
sin2 A cot2 A + cos2 A tan2 A = 1
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If `cos B = 3/5 and (A + B) =- 90° ,`find the value of sin A.
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
Simplify : 2 sin30 + 3 tan45.
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
cos4 A − sin4 A is equal to ______.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
Prove the following identity :
tanA+cotA=secAcosecA
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.
Eliminate θ if x = r cosθ and y = r sinθ.