हिंदी

`(1+ Cos Theta + Sin Theta)/( 1+ Cos Theta - Sin Theta )= (1+ Sin Theta )/(Cos Theta)` - Mathematics

Advertisements
Advertisements

प्रश्न

`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`

उत्तर

LHS =` (1+ cos theta + sin theta)/(1+ cos theta-sin theta)`

       =` ({(1+cos theta)+ sin theta}{(1+ cos theta)+ sin theta})/({(1+ cos theta )-sin theta}{(1+ cos theta )+ sin theta}) {"Multiplying the numerator and denominator by "(1 + costheta +sin theta}`

     =`({(1+ cos theta)+ sin theta}^2)/({(1+ cos theta )^2-sin ^2 theta})`

     =`(1+ cos^2 theta + 2 cos theta + sin ^2 theta + 2 sin theta (1+ cos theta))/(1+ cos^2 theta + 2 cos theta - sin ^2 theta)`

     =`(2+2 cos theta + 2 sin theta (1+ cos theta))/(1+ cos ^2 theta + 2 cos theta -(1-cos^2 theta))`

     =`(2(1+ cos theta)+2sin theta (1+ cos theta))/(2 cos^2 theta+2 cos theta)`

      =`(2(1+ cos theta) (1+ sin theta))/( 2 cos theta (1+ cos theta))`

      =`(1+sin theta)/cos theta`

      = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 27.1

संबंधित प्रश्न

Prove the following identities:

`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`

`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`

`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`


`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities

tan2 A + cot2 A = sec2 A cosec2 A − 2


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`


`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec  theta)`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove the following identity : 

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Find the value of sin 30° + cos 60°.


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


If x sin3 θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ, then prove that x2 + y2 = 1


Choose the correct alternative:

sec 60° = ?


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If 2sin2θ – cos2θ = 2, then find the value of θ.


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×